Generalizations of the Kpz Equation

نویسندگان

  • J. P. Doherty
  • M. A. Moore
  • J. M. Kim
چکیده

We generalize the KPZ equation to an O(3) N = 2j + 1 component model. In the limit N → ∞ we show that the mode coupling equations become exact. Solving these approximately we find that the dynamic exponent z increases from 3/2 for d = 1 to 2 at the dimension d ≈ 3.6. For d = 1 it can be shown analytically that z = 3/2 for all j. The case j = 2 for d = 2 is investigated by numerical integration of the KPZ equation. PACS numbers: 05.40.+j, 05.70.Ln, 64.60.Cn

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Numerical Study of KPZ Equation Based on Changing its Parameters

In this article we investigate the behaviour of the scaling exponentsof KPZ equation through changing three parameters of the equation. Inother words we would like to know how the growth exponent β and theroughness exponent α will change if the surface tension ν , the averagevelocity λ and the noise strength γchange. Using the discrete form of theequation , first we come to the results α = 0.5 ...

متن کامل

Shocks and Structure Functions of Burgers and KPZ Equations

In this paper we calculate the structure functions of one dimensional Burgers and KPZ equations with and without noise, and we interpret our findings using shocks. Most of our results are based on direct numerical simulation of the KPZ equation. Using the solution of noiseless Burgers equation we show that the exponent cq (< |h(x+r)−h(x)| q >∝ rqcq ) of the structure function of noiseless KPZ i...

متن کامل

Strong-coupling behaviour in discrete Kardar-Parisi-Zhang equations

We present a systematic discretization scheme for the Kardar-Parisi-Zhang (KPZ) equation, which correctly captures the strong-coupling properties of the continuum model. In particular we show that the scheme contains no finite-time singularities in contrast to conventional schemes. The implications of these results to i) previous numerical integration of the KPZ equation, and ii) the non-trivia...

متن کامل

Extremal paths, the stochastic heat equation, and the three-dimensional Kardar-Parisi-Zhang universality class.

Following our numerical work [Phys. Rev. Lett. 109, 170602 (2012)] focused upon the 2+1 Kardar-Parisi-Zhang (KPZ) equation with flat initial condition, we return here to study, in depth, the three-dimensional (3D) radial KPZ problem, comparing common scaling phenomena exhibited by the pt-pt directed polymer in a random medium (DPRM), the stochastic heat equation (SHE) with multiplicative noise ...

متن کامل

Anomaly in Numerical Integrations of the KPZ Equation and Improved Discretization

We demonstrate and explain that conventional finite difference schemes for direct numerical integration do not approximate the continuum Kardar-ParisiZhang (KPZ) equation due to microscopic roughness. The effective diffusion coefficient is found to be inconsistent with the nominal one. We propose a novel discretization in 1+1 dimensions which does not suffer from this deficiency and elucidates ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993